You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
73 lines
2.3 KiB
73 lines
2.3 KiB
1 year ago
|
import {cartesian, cartesianNormalizeInPlace, spherical} from "./cartesian";
|
||
|
import constant from "./constant";
|
||
|
import {acos, cos, degrees, epsilon, radians, sin, tau} from "./math";
|
||
|
import {rotateRadians} from "./rotation";
|
||
|
|
||
|
// Generates a circle centered at [0°, 0°], with a given radius and precision.
|
||
|
export function circleStream(stream, radius, delta, direction, t0, t1) {
|
||
|
if (!delta) return;
|
||
|
var cosRadius = cos(radius),
|
||
|
sinRadius = sin(radius),
|
||
|
step = direction * delta;
|
||
|
if (t0 == null) {
|
||
|
t0 = radius + direction * tau;
|
||
|
t1 = radius - step / 2;
|
||
|
} else {
|
||
|
t0 = circleRadius(cosRadius, t0);
|
||
|
t1 = circleRadius(cosRadius, t1);
|
||
|
if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau;
|
||
|
}
|
||
|
for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) {
|
||
|
point = spherical([cosRadius, -sinRadius * cos(t), -sinRadius * sin(t)]);
|
||
|
stream.point(point[0], point[1]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0].
|
||
|
function circleRadius(cosRadius, point) {
|
||
|
point = cartesian(point), point[0] -= cosRadius;
|
||
|
cartesianNormalizeInPlace(point);
|
||
|
var radius = acos(-point[1]);
|
||
|
return ((-point[2] < 0 ? -radius : radius) + tau - epsilon) % tau;
|
||
|
}
|
||
|
|
||
|
export default function() {
|
||
|
var center = constant([0, 0]),
|
||
|
radius = constant(90),
|
||
|
precision = constant(6),
|
||
|
ring,
|
||
|
rotate,
|
||
|
stream = {point: point};
|
||
|
|
||
|
function point(x, y) {
|
||
|
ring.push(x = rotate(x, y));
|
||
|
x[0] *= degrees, x[1] *= degrees;
|
||
|
}
|
||
|
|
||
|
function circle() {
|
||
|
var c = center.apply(this, arguments),
|
||
|
r = radius.apply(this, arguments) * radians,
|
||
|
p = precision.apply(this, arguments) * radians;
|
||
|
ring = [];
|
||
|
rotate = rotateRadians(-c[0] * radians, -c[1] * radians, 0).invert;
|
||
|
circleStream(stream, r, p, 1);
|
||
|
c = {type: "Polygon", coordinates: [ring]};
|
||
|
ring = rotate = null;
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
circle.center = function(_) {
|
||
|
return arguments.length ? (center = typeof _ === "function" ? _ : constant([+_[0], +_[1]]), circle) : center;
|
||
|
};
|
||
|
|
||
|
circle.radius = function(_) {
|
||
|
return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), circle) : radius;
|
||
|
};
|
||
|
|
||
|
circle.precision = function(_) {
|
||
|
return arguments.length ? (precision = typeof _ === "function" ? _ : constant(+_), circle) : precision;
|
||
|
};
|
||
|
|
||
|
return circle;
|
||
|
}
|