You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1290 lines
32 KiB
1290 lines
32 KiB
// https://d3js.org/d3-hierarchy/ v1.1.8 Copyright 2018 Mike Bostock |
|
(function (global, factory) { |
|
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : |
|
typeof define === 'function' && define.amd ? define(['exports'], factory) : |
|
(factory((global.d3 = global.d3 || {}))); |
|
}(this, (function (exports) { 'use strict'; |
|
|
|
function defaultSeparation(a, b) { |
|
return a.parent === b.parent ? 1 : 2; |
|
} |
|
|
|
function meanX(children) { |
|
return children.reduce(meanXReduce, 0) / children.length; |
|
} |
|
|
|
function meanXReduce(x, c) { |
|
return x + c.x; |
|
} |
|
|
|
function maxY(children) { |
|
return 1 + children.reduce(maxYReduce, 0); |
|
} |
|
|
|
function maxYReduce(y, c) { |
|
return Math.max(y, c.y); |
|
} |
|
|
|
function leafLeft(node) { |
|
var children; |
|
while (children = node.children) node = children[0]; |
|
return node; |
|
} |
|
|
|
function leafRight(node) { |
|
var children; |
|
while (children = node.children) node = children[children.length - 1]; |
|
return node; |
|
} |
|
|
|
function cluster() { |
|
var separation = defaultSeparation, |
|
dx = 1, |
|
dy = 1, |
|
nodeSize = false; |
|
|
|
function cluster(root) { |
|
var previousNode, |
|
x = 0; |
|
|
|
// First walk, computing the initial x & y values. |
|
root.eachAfter(function(node) { |
|
var children = node.children; |
|
if (children) { |
|
node.x = meanX(children); |
|
node.y = maxY(children); |
|
} else { |
|
node.x = previousNode ? x += separation(node, previousNode) : 0; |
|
node.y = 0; |
|
previousNode = node; |
|
} |
|
}); |
|
|
|
var left = leafLeft(root), |
|
right = leafRight(root), |
|
x0 = left.x - separation(left, right) / 2, |
|
x1 = right.x + separation(right, left) / 2; |
|
|
|
// Second walk, normalizing x & y to the desired size. |
|
return root.eachAfter(nodeSize ? function(node) { |
|
node.x = (node.x - root.x) * dx; |
|
node.y = (root.y - node.y) * dy; |
|
} : function(node) { |
|
node.x = (node.x - x0) / (x1 - x0) * dx; |
|
node.y = (1 - (root.y ? node.y / root.y : 1)) * dy; |
|
}); |
|
} |
|
|
|
cluster.separation = function(x) { |
|
return arguments.length ? (separation = x, cluster) : separation; |
|
}; |
|
|
|
cluster.size = function(x) { |
|
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? null : [dx, dy]); |
|
}; |
|
|
|
cluster.nodeSize = function(x) { |
|
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? [dx, dy] : null); |
|
}; |
|
|
|
return cluster; |
|
} |
|
|
|
function count(node) { |
|
var sum = 0, |
|
children = node.children, |
|
i = children && children.length; |
|
if (!i) sum = 1; |
|
else while (--i >= 0) sum += children[i].value; |
|
node.value = sum; |
|
} |
|
|
|
function node_count() { |
|
return this.eachAfter(count); |
|
} |
|
|
|
function node_each(callback) { |
|
var node = this, current, next = [node], children, i, n; |
|
do { |
|
current = next.reverse(), next = []; |
|
while (node = current.pop()) { |
|
callback(node), children = node.children; |
|
if (children) for (i = 0, n = children.length; i < n; ++i) { |
|
next.push(children[i]); |
|
} |
|
} |
|
} while (next.length); |
|
return this; |
|
} |
|
|
|
function node_eachBefore(callback) { |
|
var node = this, nodes = [node], children, i; |
|
while (node = nodes.pop()) { |
|
callback(node), children = node.children; |
|
if (children) for (i = children.length - 1; i >= 0; --i) { |
|
nodes.push(children[i]); |
|
} |
|
} |
|
return this; |
|
} |
|
|
|
function node_eachAfter(callback) { |
|
var node = this, nodes = [node], next = [], children, i, n; |
|
while (node = nodes.pop()) { |
|
next.push(node), children = node.children; |
|
if (children) for (i = 0, n = children.length; i < n; ++i) { |
|
nodes.push(children[i]); |
|
} |
|
} |
|
while (node = next.pop()) { |
|
callback(node); |
|
} |
|
return this; |
|
} |
|
|
|
function node_sum(value) { |
|
return this.eachAfter(function(node) { |
|
var sum = +value(node.data) || 0, |
|
children = node.children, |
|
i = children && children.length; |
|
while (--i >= 0) sum += children[i].value; |
|
node.value = sum; |
|
}); |
|
} |
|
|
|
function node_sort(compare) { |
|
return this.eachBefore(function(node) { |
|
if (node.children) { |
|
node.children.sort(compare); |
|
} |
|
}); |
|
} |
|
|
|
function node_path(end) { |
|
var start = this, |
|
ancestor = leastCommonAncestor(start, end), |
|
nodes = [start]; |
|
while (start !== ancestor) { |
|
start = start.parent; |
|
nodes.push(start); |
|
} |
|
var k = nodes.length; |
|
while (end !== ancestor) { |
|
nodes.splice(k, 0, end); |
|
end = end.parent; |
|
} |
|
return nodes; |
|
} |
|
|
|
function leastCommonAncestor(a, b) { |
|
if (a === b) return a; |
|
var aNodes = a.ancestors(), |
|
bNodes = b.ancestors(), |
|
c = null; |
|
a = aNodes.pop(); |
|
b = bNodes.pop(); |
|
while (a === b) { |
|
c = a; |
|
a = aNodes.pop(); |
|
b = bNodes.pop(); |
|
} |
|
return c; |
|
} |
|
|
|
function node_ancestors() { |
|
var node = this, nodes = [node]; |
|
while (node = node.parent) { |
|
nodes.push(node); |
|
} |
|
return nodes; |
|
} |
|
|
|
function node_descendants() { |
|
var nodes = []; |
|
this.each(function(node) { |
|
nodes.push(node); |
|
}); |
|
return nodes; |
|
} |
|
|
|
function node_leaves() { |
|
var leaves = []; |
|
this.eachBefore(function(node) { |
|
if (!node.children) { |
|
leaves.push(node); |
|
} |
|
}); |
|
return leaves; |
|
} |
|
|
|
function node_links() { |
|
var root = this, links = []; |
|
root.each(function(node) { |
|
if (node !== root) { // Don’t include the root’s parent, if any. |
|
links.push({source: node.parent, target: node}); |
|
} |
|
}); |
|
return links; |
|
} |
|
|
|
function hierarchy(data, children) { |
|
var root = new Node(data), |
|
valued = +data.value && (root.value = data.value), |
|
node, |
|
nodes = [root], |
|
child, |
|
childs, |
|
i, |
|
n; |
|
|
|
if (children == null) children = defaultChildren; |
|
|
|
while (node = nodes.pop()) { |
|
if (valued) node.value = +node.data.value; |
|
if ((childs = children(node.data)) && (n = childs.length)) { |
|
node.children = new Array(n); |
|
for (i = n - 1; i >= 0; --i) { |
|
nodes.push(child = node.children[i] = new Node(childs[i])); |
|
child.parent = node; |
|
child.depth = node.depth + 1; |
|
} |
|
} |
|
} |
|
|
|
return root.eachBefore(computeHeight); |
|
} |
|
|
|
function node_copy() { |
|
return hierarchy(this).eachBefore(copyData); |
|
} |
|
|
|
function defaultChildren(d) { |
|
return d.children; |
|
} |
|
|
|
function copyData(node) { |
|
node.data = node.data.data; |
|
} |
|
|
|
function computeHeight(node) { |
|
var height = 0; |
|
do node.height = height; |
|
while ((node = node.parent) && (node.height < ++height)); |
|
} |
|
|
|
function Node(data) { |
|
this.data = data; |
|
this.depth = |
|
this.height = 0; |
|
this.parent = null; |
|
} |
|
|
|
Node.prototype = hierarchy.prototype = { |
|
constructor: Node, |
|
count: node_count, |
|
each: node_each, |
|
eachAfter: node_eachAfter, |
|
eachBefore: node_eachBefore, |
|
sum: node_sum, |
|
sort: node_sort, |
|
path: node_path, |
|
ancestors: node_ancestors, |
|
descendants: node_descendants, |
|
leaves: node_leaves, |
|
links: node_links, |
|
copy: node_copy |
|
}; |
|
|
|
var slice = Array.prototype.slice; |
|
|
|
function shuffle(array) { |
|
var m = array.length, |
|
t, |
|
i; |
|
|
|
while (m) { |
|
i = Math.random() * m-- | 0; |
|
t = array[m]; |
|
array[m] = array[i]; |
|
array[i] = t; |
|
} |
|
|
|
return array; |
|
} |
|
|
|
function enclose(circles) { |
|
var i = 0, n = (circles = shuffle(slice.call(circles))).length, B = [], p, e; |
|
|
|
while (i < n) { |
|
p = circles[i]; |
|
if (e && enclosesWeak(e, p)) ++i; |
|
else e = encloseBasis(B = extendBasis(B, p)), i = 0; |
|
} |
|
|
|
return e; |
|
} |
|
|
|
function extendBasis(B, p) { |
|
var i, j; |
|
|
|
if (enclosesWeakAll(p, B)) return [p]; |
|
|
|
// If we get here then B must have at least one element. |
|
for (i = 0; i < B.length; ++i) { |
|
if (enclosesNot(p, B[i]) |
|
&& enclosesWeakAll(encloseBasis2(B[i], p), B)) { |
|
return [B[i], p]; |
|
} |
|
} |
|
|
|
// If we get here then B must have at least two elements. |
|
for (i = 0; i < B.length - 1; ++i) { |
|
for (j = i + 1; j < B.length; ++j) { |
|
if (enclosesNot(encloseBasis2(B[i], B[j]), p) |
|
&& enclosesNot(encloseBasis2(B[i], p), B[j]) |
|
&& enclosesNot(encloseBasis2(B[j], p), B[i]) |
|
&& enclosesWeakAll(encloseBasis3(B[i], B[j], p), B)) { |
|
return [B[i], B[j], p]; |
|
} |
|
} |
|
} |
|
|
|
// If we get here then something is very wrong. |
|
throw new Error; |
|
} |
|
|
|
function enclosesNot(a, b) { |
|
var dr = a.r - b.r, dx = b.x - a.x, dy = b.y - a.y; |
|
return dr < 0 || dr * dr < dx * dx + dy * dy; |
|
} |
|
|
|
function enclosesWeak(a, b) { |
|
var dr = a.r - b.r + 1e-6, dx = b.x - a.x, dy = b.y - a.y; |
|
return dr > 0 && dr * dr > dx * dx + dy * dy; |
|
} |
|
|
|
function enclosesWeakAll(a, B) { |
|
for (var i = 0; i < B.length; ++i) { |
|
if (!enclosesWeak(a, B[i])) { |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
function encloseBasis(B) { |
|
switch (B.length) { |
|
case 1: return encloseBasis1(B[0]); |
|
case 2: return encloseBasis2(B[0], B[1]); |
|
case 3: return encloseBasis3(B[0], B[1], B[2]); |
|
} |
|
} |
|
|
|
function encloseBasis1(a) { |
|
return { |
|
x: a.x, |
|
y: a.y, |
|
r: a.r |
|
}; |
|
} |
|
|
|
function encloseBasis2(a, b) { |
|
var x1 = a.x, y1 = a.y, r1 = a.r, |
|
x2 = b.x, y2 = b.y, r2 = b.r, |
|
x21 = x2 - x1, y21 = y2 - y1, r21 = r2 - r1, |
|
l = Math.sqrt(x21 * x21 + y21 * y21); |
|
return { |
|
x: (x1 + x2 + x21 / l * r21) / 2, |
|
y: (y1 + y2 + y21 / l * r21) / 2, |
|
r: (l + r1 + r2) / 2 |
|
}; |
|
} |
|
|
|
function encloseBasis3(a, b, c) { |
|
var x1 = a.x, y1 = a.y, r1 = a.r, |
|
x2 = b.x, y2 = b.y, r2 = b.r, |
|
x3 = c.x, y3 = c.y, r3 = c.r, |
|
a2 = x1 - x2, |
|
a3 = x1 - x3, |
|
b2 = y1 - y2, |
|
b3 = y1 - y3, |
|
c2 = r2 - r1, |
|
c3 = r3 - r1, |
|
d1 = x1 * x1 + y1 * y1 - r1 * r1, |
|
d2 = d1 - x2 * x2 - y2 * y2 + r2 * r2, |
|
d3 = d1 - x3 * x3 - y3 * y3 + r3 * r3, |
|
ab = a3 * b2 - a2 * b3, |
|
xa = (b2 * d3 - b3 * d2) / (ab * 2) - x1, |
|
xb = (b3 * c2 - b2 * c3) / ab, |
|
ya = (a3 * d2 - a2 * d3) / (ab * 2) - y1, |
|
yb = (a2 * c3 - a3 * c2) / ab, |
|
A = xb * xb + yb * yb - 1, |
|
B = 2 * (r1 + xa * xb + ya * yb), |
|
C = xa * xa + ya * ya - r1 * r1, |
|
r = -(A ? (B + Math.sqrt(B * B - 4 * A * C)) / (2 * A) : C / B); |
|
return { |
|
x: x1 + xa + xb * r, |
|
y: y1 + ya + yb * r, |
|
r: r |
|
}; |
|
} |
|
|
|
function place(b, a, c) { |
|
var dx = b.x - a.x, x, a2, |
|
dy = b.y - a.y, y, b2, |
|
d2 = dx * dx + dy * dy; |
|
if (d2) { |
|
a2 = a.r + c.r, a2 *= a2; |
|
b2 = b.r + c.r, b2 *= b2; |
|
if (a2 > b2) { |
|
x = (d2 + b2 - a2) / (2 * d2); |
|
y = Math.sqrt(Math.max(0, b2 / d2 - x * x)); |
|
c.x = b.x - x * dx - y * dy; |
|
c.y = b.y - x * dy + y * dx; |
|
} else { |
|
x = (d2 + a2 - b2) / (2 * d2); |
|
y = Math.sqrt(Math.max(0, a2 / d2 - x * x)); |
|
c.x = a.x + x * dx - y * dy; |
|
c.y = a.y + x * dy + y * dx; |
|
} |
|
} else { |
|
c.x = a.x + c.r; |
|
c.y = a.y; |
|
} |
|
} |
|
|
|
function intersects(a, b) { |
|
var dr = a.r + b.r - 1e-6, dx = b.x - a.x, dy = b.y - a.y; |
|
return dr > 0 && dr * dr > dx * dx + dy * dy; |
|
} |
|
|
|
function score(node) { |
|
var a = node._, |
|
b = node.next._, |
|
ab = a.r + b.r, |
|
dx = (a.x * b.r + b.x * a.r) / ab, |
|
dy = (a.y * b.r + b.y * a.r) / ab; |
|
return dx * dx + dy * dy; |
|
} |
|
|
|
function Node$1(circle) { |
|
this._ = circle; |
|
this.next = null; |
|
this.previous = null; |
|
} |
|
|
|
function packEnclose(circles) { |
|
if (!(n = circles.length)) return 0; |
|
|
|
var a, b, c, n, aa, ca, i, j, k, sj, sk; |
|
|
|
// Place the first circle. |
|
a = circles[0], a.x = 0, a.y = 0; |
|
if (!(n > 1)) return a.r; |
|
|
|
// Place the second circle. |
|
b = circles[1], a.x = -b.r, b.x = a.r, b.y = 0; |
|
if (!(n > 2)) return a.r + b.r; |
|
|
|
// Place the third circle. |
|
place(b, a, c = circles[2]); |
|
|
|
// Initialize the front-chain using the first three circles a, b and c. |
|
a = new Node$1(a), b = new Node$1(b), c = new Node$1(c); |
|
a.next = c.previous = b; |
|
b.next = a.previous = c; |
|
c.next = b.previous = a; |
|
|
|
// Attempt to place each remaining circle… |
|
pack: for (i = 3; i < n; ++i) { |
|
place(a._, b._, c = circles[i]), c = new Node$1(c); |
|
|
|
// Find the closest intersecting circle on the front-chain, if any. |
|
// “Closeness” is determined by linear distance along the front-chain. |
|
// “Ahead” or “behind” is likewise determined by linear distance. |
|
j = b.next, k = a.previous, sj = b._.r, sk = a._.r; |
|
do { |
|
if (sj <= sk) { |
|
if (intersects(j._, c._)) { |
|
b = j, a.next = b, b.previous = a, --i; |
|
continue pack; |
|
} |
|
sj += j._.r, j = j.next; |
|
} else { |
|
if (intersects(k._, c._)) { |
|
a = k, a.next = b, b.previous = a, --i; |
|
continue pack; |
|
} |
|
sk += k._.r, k = k.previous; |
|
} |
|
} while (j !== k.next); |
|
|
|
// Success! Insert the new circle c between a and b. |
|
c.previous = a, c.next = b, a.next = b.previous = b = c; |
|
|
|
// Compute the new closest circle pair to the centroid. |
|
aa = score(a); |
|
while ((c = c.next) !== b) { |
|
if ((ca = score(c)) < aa) { |
|
a = c, aa = ca; |
|
} |
|
} |
|
b = a.next; |
|
} |
|
|
|
// Compute the enclosing circle of the front chain. |
|
a = [b._], c = b; while ((c = c.next) !== b) a.push(c._); c = enclose(a); |
|
|
|
// Translate the circles to put the enclosing circle around the origin. |
|
for (i = 0; i < n; ++i) a = circles[i], a.x -= c.x, a.y -= c.y; |
|
|
|
return c.r; |
|
} |
|
|
|
function siblings(circles) { |
|
packEnclose(circles); |
|
return circles; |
|
} |
|
|
|
function optional(f) { |
|
return f == null ? null : required(f); |
|
} |
|
|
|
function required(f) { |
|
if (typeof f !== "function") throw new Error; |
|
return f; |
|
} |
|
|
|
function constantZero() { |
|
return 0; |
|
} |
|
|
|
function constant(x) { |
|
return function() { |
|
return x; |
|
}; |
|
} |
|
|
|
function defaultRadius(d) { |
|
return Math.sqrt(d.value); |
|
} |
|
|
|
function index() { |
|
var radius = null, |
|
dx = 1, |
|
dy = 1, |
|
padding = constantZero; |
|
|
|
function pack(root) { |
|
root.x = dx / 2, root.y = dy / 2; |
|
if (radius) { |
|
root.eachBefore(radiusLeaf(radius)) |
|
.eachAfter(packChildren(padding, 0.5)) |
|
.eachBefore(translateChild(1)); |
|
} else { |
|
root.eachBefore(radiusLeaf(defaultRadius)) |
|
.eachAfter(packChildren(constantZero, 1)) |
|
.eachAfter(packChildren(padding, root.r / Math.min(dx, dy))) |
|
.eachBefore(translateChild(Math.min(dx, dy) / (2 * root.r))); |
|
} |
|
return root; |
|
} |
|
|
|
pack.radius = function(x) { |
|
return arguments.length ? (radius = optional(x), pack) : radius; |
|
}; |
|
|
|
pack.size = function(x) { |
|
return arguments.length ? (dx = +x[0], dy = +x[1], pack) : [dx, dy]; |
|
}; |
|
|
|
pack.padding = function(x) { |
|
return arguments.length ? (padding = typeof x === "function" ? x : constant(+x), pack) : padding; |
|
}; |
|
|
|
return pack; |
|
} |
|
|
|
function radiusLeaf(radius) { |
|
return function(node) { |
|
if (!node.children) { |
|
node.r = Math.max(0, +radius(node) || 0); |
|
} |
|
}; |
|
} |
|
|
|
function packChildren(padding, k) { |
|
return function(node) { |
|
if (children = node.children) { |
|
var children, |
|
i, |
|
n = children.length, |
|
r = padding(node) * k || 0, |
|
e; |
|
|
|
if (r) for (i = 0; i < n; ++i) children[i].r += r; |
|
e = packEnclose(children); |
|
if (r) for (i = 0; i < n; ++i) children[i].r -= r; |
|
node.r = e + r; |
|
} |
|
}; |
|
} |
|
|
|
function translateChild(k) { |
|
return function(node) { |
|
var parent = node.parent; |
|
node.r *= k; |
|
if (parent) { |
|
node.x = parent.x + k * node.x; |
|
node.y = parent.y + k * node.y; |
|
} |
|
}; |
|
} |
|
|
|
function roundNode(node) { |
|
node.x0 = Math.round(node.x0); |
|
node.y0 = Math.round(node.y0); |
|
node.x1 = Math.round(node.x1); |
|
node.y1 = Math.round(node.y1); |
|
} |
|
|
|
function treemapDice(parent, x0, y0, x1, y1) { |
|
var nodes = parent.children, |
|
node, |
|
i = -1, |
|
n = nodes.length, |
|
k = parent.value && (x1 - x0) / parent.value; |
|
|
|
while (++i < n) { |
|
node = nodes[i], node.y0 = y0, node.y1 = y1; |
|
node.x0 = x0, node.x1 = x0 += node.value * k; |
|
} |
|
} |
|
|
|
function partition() { |
|
var dx = 1, |
|
dy = 1, |
|
padding = 0, |
|
round = false; |
|
|
|
function partition(root) { |
|
var n = root.height + 1; |
|
root.x0 = |
|
root.y0 = padding; |
|
root.x1 = dx; |
|
root.y1 = dy / n; |
|
root.eachBefore(positionNode(dy, n)); |
|
if (round) root.eachBefore(roundNode); |
|
return root; |
|
} |
|
|
|
function positionNode(dy, n) { |
|
return function(node) { |
|
if (node.children) { |
|
treemapDice(node, node.x0, dy * (node.depth + 1) / n, node.x1, dy * (node.depth + 2) / n); |
|
} |
|
var x0 = node.x0, |
|
y0 = node.y0, |
|
x1 = node.x1 - padding, |
|
y1 = node.y1 - padding; |
|
if (x1 < x0) x0 = x1 = (x0 + x1) / 2; |
|
if (y1 < y0) y0 = y1 = (y0 + y1) / 2; |
|
node.x0 = x0; |
|
node.y0 = y0; |
|
node.x1 = x1; |
|
node.y1 = y1; |
|
}; |
|
} |
|
|
|
partition.round = function(x) { |
|
return arguments.length ? (round = !!x, partition) : round; |
|
}; |
|
|
|
partition.size = function(x) { |
|
return arguments.length ? (dx = +x[0], dy = +x[1], partition) : [dx, dy]; |
|
}; |
|
|
|
partition.padding = function(x) { |
|
return arguments.length ? (padding = +x, partition) : padding; |
|
}; |
|
|
|
return partition; |
|
} |
|
|
|
var keyPrefix = "$", // Protect against keys like “__proto__”. |
|
preroot = {depth: -1}, |
|
ambiguous = {}; |
|
|
|
function defaultId(d) { |
|
return d.id; |
|
} |
|
|
|
function defaultParentId(d) { |
|
return d.parentId; |
|
} |
|
|
|
function stratify() { |
|
var id = defaultId, |
|
parentId = defaultParentId; |
|
|
|
function stratify(data) { |
|
var d, |
|
i, |
|
n = data.length, |
|
root, |
|
parent, |
|
node, |
|
nodes = new Array(n), |
|
nodeId, |
|
nodeKey, |
|
nodeByKey = {}; |
|
|
|
for (i = 0; i < n; ++i) { |
|
d = data[i], node = nodes[i] = new Node(d); |
|
if ((nodeId = id(d, i, data)) != null && (nodeId += "")) { |
|
nodeKey = keyPrefix + (node.id = nodeId); |
|
nodeByKey[nodeKey] = nodeKey in nodeByKey ? ambiguous : node; |
|
} |
|
} |
|
|
|
for (i = 0; i < n; ++i) { |
|
node = nodes[i], nodeId = parentId(data[i], i, data); |
|
if (nodeId == null || !(nodeId += "")) { |
|
if (root) throw new Error("multiple roots"); |
|
root = node; |
|
} else { |
|
parent = nodeByKey[keyPrefix + nodeId]; |
|
if (!parent) throw new Error("missing: " + nodeId); |
|
if (parent === ambiguous) throw new Error("ambiguous: " + nodeId); |
|
if (parent.children) parent.children.push(node); |
|
else parent.children = [node]; |
|
node.parent = parent; |
|
} |
|
} |
|
|
|
if (!root) throw new Error("no root"); |
|
root.parent = preroot; |
|
root.eachBefore(function(node) { node.depth = node.parent.depth + 1; --n; }).eachBefore(computeHeight); |
|
root.parent = null; |
|
if (n > 0) throw new Error("cycle"); |
|
|
|
return root; |
|
} |
|
|
|
stratify.id = function(x) { |
|
return arguments.length ? (id = required(x), stratify) : id; |
|
}; |
|
|
|
stratify.parentId = function(x) { |
|
return arguments.length ? (parentId = required(x), stratify) : parentId; |
|
}; |
|
|
|
return stratify; |
|
} |
|
|
|
function defaultSeparation$1(a, b) { |
|
return a.parent === b.parent ? 1 : 2; |
|
} |
|
|
|
// function radialSeparation(a, b) { |
|
// return (a.parent === b.parent ? 1 : 2) / a.depth; |
|
// } |
|
|
|
// This function is used to traverse the left contour of a subtree (or |
|
// subforest). It returns the successor of v on this contour. This successor is |
|
// either given by the leftmost child of v or by the thread of v. The function |
|
// returns null if and only if v is on the highest level of its subtree. |
|
function nextLeft(v) { |
|
var children = v.children; |
|
return children ? children[0] : v.t; |
|
} |
|
|
|
// This function works analogously to nextLeft. |
|
function nextRight(v) { |
|
var children = v.children; |
|
return children ? children[children.length - 1] : v.t; |
|
} |
|
|
|
// Shifts the current subtree rooted at w+. This is done by increasing |
|
// prelim(w+) and mod(w+) by shift. |
|
function moveSubtree(wm, wp, shift) { |
|
var change = shift / (wp.i - wm.i); |
|
wp.c -= change; |
|
wp.s += shift; |
|
wm.c += change; |
|
wp.z += shift; |
|
wp.m += shift; |
|
} |
|
|
|
// All other shifts, applied to the smaller subtrees between w- and w+, are |
|
// performed by this function. To prepare the shifts, we have to adjust |
|
// change(w+), shift(w+), and change(w-). |
|
function executeShifts(v) { |
|
var shift = 0, |
|
change = 0, |
|
children = v.children, |
|
i = children.length, |
|
w; |
|
while (--i >= 0) { |
|
w = children[i]; |
|
w.z += shift; |
|
w.m += shift; |
|
shift += w.s + (change += w.c); |
|
} |
|
} |
|
|
|
// If vi-’s ancestor is a sibling of v, returns vi-’s ancestor. Otherwise, |
|
// returns the specified (default) ancestor. |
|
function nextAncestor(vim, v, ancestor) { |
|
return vim.a.parent === v.parent ? vim.a : ancestor; |
|
} |
|
|
|
function TreeNode(node, i) { |
|
this._ = node; |
|
this.parent = null; |
|
this.children = null; |
|
this.A = null; // default ancestor |
|
this.a = this; // ancestor |
|
this.z = 0; // prelim |
|
this.m = 0; // mod |
|
this.c = 0; // change |
|
this.s = 0; // shift |
|
this.t = null; // thread |
|
this.i = i; // number |
|
} |
|
|
|
TreeNode.prototype = Object.create(Node.prototype); |
|
|
|
function treeRoot(root) { |
|
var tree = new TreeNode(root, 0), |
|
node, |
|
nodes = [tree], |
|
child, |
|
children, |
|
i, |
|
n; |
|
|
|
while (node = nodes.pop()) { |
|
if (children = node._.children) { |
|
node.children = new Array(n = children.length); |
|
for (i = n - 1; i >= 0; --i) { |
|
nodes.push(child = node.children[i] = new TreeNode(children[i], i)); |
|
child.parent = node; |
|
} |
|
} |
|
} |
|
|
|
(tree.parent = new TreeNode(null, 0)).children = [tree]; |
|
return tree; |
|
} |
|
|
|
// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm |
|
function tree() { |
|
var separation = defaultSeparation$1, |
|
dx = 1, |
|
dy = 1, |
|
nodeSize = null; |
|
|
|
function tree(root) { |
|
var t = treeRoot(root); |
|
|
|
// Compute the layout using Buchheim et al.’s algorithm. |
|
t.eachAfter(firstWalk), t.parent.m = -t.z; |
|
t.eachBefore(secondWalk); |
|
|
|
// If a fixed node size is specified, scale x and y. |
|
if (nodeSize) root.eachBefore(sizeNode); |
|
|
|
// If a fixed tree size is specified, scale x and y based on the extent. |
|
// Compute the left-most, right-most, and depth-most nodes for extents. |
|
else { |
|
var left = root, |
|
right = root, |
|
bottom = root; |
|
root.eachBefore(function(node) { |
|
if (node.x < left.x) left = node; |
|
if (node.x > right.x) right = node; |
|
if (node.depth > bottom.depth) bottom = node; |
|
}); |
|
var s = left === right ? 1 : separation(left, right) / 2, |
|
tx = s - left.x, |
|
kx = dx / (right.x + s + tx), |
|
ky = dy / (bottom.depth || 1); |
|
root.eachBefore(function(node) { |
|
node.x = (node.x + tx) * kx; |
|
node.y = node.depth * ky; |
|
}); |
|
} |
|
|
|
return root; |
|
} |
|
|
|
// Computes a preliminary x-coordinate for v. Before that, FIRST WALK is |
|
// applied recursively to the children of v, as well as the function |
|
// APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the |
|
// node v is placed to the midpoint of its outermost children. |
|
function firstWalk(v) { |
|
var children = v.children, |
|
siblings = v.parent.children, |
|
w = v.i ? siblings[v.i - 1] : null; |
|
if (children) { |
|
executeShifts(v); |
|
var midpoint = (children[0].z + children[children.length - 1].z) / 2; |
|
if (w) { |
|
v.z = w.z + separation(v._, w._); |
|
v.m = v.z - midpoint; |
|
} else { |
|
v.z = midpoint; |
|
} |
|
} else if (w) { |
|
v.z = w.z + separation(v._, w._); |
|
} |
|
v.parent.A = apportion(v, w, v.parent.A || siblings[0]); |
|
} |
|
|
|
// Computes all real x-coordinates by summing up the modifiers recursively. |
|
function secondWalk(v) { |
|
v._.x = v.z + v.parent.m; |
|
v.m += v.parent.m; |
|
} |
|
|
|
// The core of the algorithm. Here, a new subtree is combined with the |
|
// previous subtrees. Threads are used to traverse the inside and outside |
|
// contours of the left and right subtree up to the highest common level. The |
|
// vertices used for the traversals are vi+, vi-, vo-, and vo+, where the |
|
// superscript o means outside and i means inside, the subscript - means left |
|
// subtree and + means right subtree. For summing up the modifiers along the |
|
// contour, we use respective variables si+, si-, so-, and so+. Whenever two |
|
// nodes of the inside contours conflict, we compute the left one of the |
|
// greatest uncommon ancestors using the function ANCESTOR and call MOVE |
|
// SUBTREE to shift the subtree and prepare the shifts of smaller subtrees. |
|
// Finally, we add a new thread (if necessary). |
|
function apportion(v, w, ancestor) { |
|
if (w) { |
|
var vip = v, |
|
vop = v, |
|
vim = w, |
|
vom = vip.parent.children[0], |
|
sip = vip.m, |
|
sop = vop.m, |
|
sim = vim.m, |
|
som = vom.m, |
|
shift; |
|
while (vim = nextRight(vim), vip = nextLeft(vip), vim && vip) { |
|
vom = nextLeft(vom); |
|
vop = nextRight(vop); |
|
vop.a = v; |
|
shift = vim.z + sim - vip.z - sip + separation(vim._, vip._); |
|
if (shift > 0) { |
|
moveSubtree(nextAncestor(vim, v, ancestor), v, shift); |
|
sip += shift; |
|
sop += shift; |
|
} |
|
sim += vim.m; |
|
sip += vip.m; |
|
som += vom.m; |
|
sop += vop.m; |
|
} |
|
if (vim && !nextRight(vop)) { |
|
vop.t = vim; |
|
vop.m += sim - sop; |
|
} |
|
if (vip && !nextLeft(vom)) { |
|
vom.t = vip; |
|
vom.m += sip - som; |
|
ancestor = v; |
|
} |
|
} |
|
return ancestor; |
|
} |
|
|
|
function sizeNode(node) { |
|
node.x *= dx; |
|
node.y = node.depth * dy; |
|
} |
|
|
|
tree.separation = function(x) { |
|
return arguments.length ? (separation = x, tree) : separation; |
|
}; |
|
|
|
tree.size = function(x) { |
|
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], tree) : (nodeSize ? null : [dx, dy]); |
|
}; |
|
|
|
tree.nodeSize = function(x) { |
|
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], tree) : (nodeSize ? [dx, dy] : null); |
|
}; |
|
|
|
return tree; |
|
} |
|
|
|
function treemapSlice(parent, x0, y0, x1, y1) { |
|
var nodes = parent.children, |
|
node, |
|
i = -1, |
|
n = nodes.length, |
|
k = parent.value && (y1 - y0) / parent.value; |
|
|
|
while (++i < n) { |
|
node = nodes[i], node.x0 = x0, node.x1 = x1; |
|
node.y0 = y0, node.y1 = y0 += node.value * k; |
|
} |
|
} |
|
|
|
var phi = (1 + Math.sqrt(5)) / 2; |
|
|
|
function squarifyRatio(ratio, parent, x0, y0, x1, y1) { |
|
var rows = [], |
|
nodes = parent.children, |
|
row, |
|
nodeValue, |
|
i0 = 0, |
|
i1 = 0, |
|
n = nodes.length, |
|
dx, dy, |
|
value = parent.value, |
|
sumValue, |
|
minValue, |
|
maxValue, |
|
newRatio, |
|
minRatio, |
|
alpha, |
|
beta; |
|
|
|
while (i0 < n) { |
|
dx = x1 - x0, dy = y1 - y0; |
|
|
|
// Find the next non-empty node. |
|
do sumValue = nodes[i1++].value; while (!sumValue && i1 < n); |
|
minValue = maxValue = sumValue; |
|
alpha = Math.max(dy / dx, dx / dy) / (value * ratio); |
|
beta = sumValue * sumValue * alpha; |
|
minRatio = Math.max(maxValue / beta, beta / minValue); |
|
|
|
// Keep adding nodes while the aspect ratio maintains or improves. |
|
for (; i1 < n; ++i1) { |
|
sumValue += nodeValue = nodes[i1].value; |
|
if (nodeValue < minValue) minValue = nodeValue; |
|
if (nodeValue > maxValue) maxValue = nodeValue; |
|
beta = sumValue * sumValue * alpha; |
|
newRatio = Math.max(maxValue / beta, beta / minValue); |
|
if (newRatio > minRatio) { sumValue -= nodeValue; break; } |
|
minRatio = newRatio; |
|
} |
|
|
|
// Position and record the row orientation. |
|
rows.push(row = {value: sumValue, dice: dx < dy, children: nodes.slice(i0, i1)}); |
|
if (row.dice) treemapDice(row, x0, y0, x1, value ? y0 += dy * sumValue / value : y1); |
|
else treemapSlice(row, x0, y0, value ? x0 += dx * sumValue / value : x1, y1); |
|
value -= sumValue, i0 = i1; |
|
} |
|
|
|
return rows; |
|
} |
|
|
|
var squarify = (function custom(ratio) { |
|
|
|
function squarify(parent, x0, y0, x1, y1) { |
|
squarifyRatio(ratio, parent, x0, y0, x1, y1); |
|
} |
|
|
|
squarify.ratio = function(x) { |
|
return custom((x = +x) > 1 ? x : 1); |
|
}; |
|
|
|
return squarify; |
|
})(phi); |
|
|
|
function index$1() { |
|
var tile = squarify, |
|
round = false, |
|
dx = 1, |
|
dy = 1, |
|
paddingStack = [0], |
|
paddingInner = constantZero, |
|
paddingTop = constantZero, |
|
paddingRight = constantZero, |
|
paddingBottom = constantZero, |
|
paddingLeft = constantZero; |
|
|
|
function treemap(root) { |
|
root.x0 = |
|
root.y0 = 0; |
|
root.x1 = dx; |
|
root.y1 = dy; |
|
root.eachBefore(positionNode); |
|
paddingStack = [0]; |
|
if (round) root.eachBefore(roundNode); |
|
return root; |
|
} |
|
|
|
function positionNode(node) { |
|
var p = paddingStack[node.depth], |
|
x0 = node.x0 + p, |
|
y0 = node.y0 + p, |
|
x1 = node.x1 - p, |
|
y1 = node.y1 - p; |
|
if (x1 < x0) x0 = x1 = (x0 + x1) / 2; |
|
if (y1 < y0) y0 = y1 = (y0 + y1) / 2; |
|
node.x0 = x0; |
|
node.y0 = y0; |
|
node.x1 = x1; |
|
node.y1 = y1; |
|
if (node.children) { |
|
p = paddingStack[node.depth + 1] = paddingInner(node) / 2; |
|
x0 += paddingLeft(node) - p; |
|
y0 += paddingTop(node) - p; |
|
x1 -= paddingRight(node) - p; |
|
y1 -= paddingBottom(node) - p; |
|
if (x1 < x0) x0 = x1 = (x0 + x1) / 2; |
|
if (y1 < y0) y0 = y1 = (y0 + y1) / 2; |
|
tile(node, x0, y0, x1, y1); |
|
} |
|
} |
|
|
|
treemap.round = function(x) { |
|
return arguments.length ? (round = !!x, treemap) : round; |
|
}; |
|
|
|
treemap.size = function(x) { |
|
return arguments.length ? (dx = +x[0], dy = +x[1], treemap) : [dx, dy]; |
|
}; |
|
|
|
treemap.tile = function(x) { |
|
return arguments.length ? (tile = required(x), treemap) : tile; |
|
}; |
|
|
|
treemap.padding = function(x) { |
|
return arguments.length ? treemap.paddingInner(x).paddingOuter(x) : treemap.paddingInner(); |
|
}; |
|
|
|
treemap.paddingInner = function(x) { |
|
return arguments.length ? (paddingInner = typeof x === "function" ? x : constant(+x), treemap) : paddingInner; |
|
}; |
|
|
|
treemap.paddingOuter = function(x) { |
|
return arguments.length ? treemap.paddingTop(x).paddingRight(x).paddingBottom(x).paddingLeft(x) : treemap.paddingTop(); |
|
}; |
|
|
|
treemap.paddingTop = function(x) { |
|
return arguments.length ? (paddingTop = typeof x === "function" ? x : constant(+x), treemap) : paddingTop; |
|
}; |
|
|
|
treemap.paddingRight = function(x) { |
|
return arguments.length ? (paddingRight = typeof x === "function" ? x : constant(+x), treemap) : paddingRight; |
|
}; |
|
|
|
treemap.paddingBottom = function(x) { |
|
return arguments.length ? (paddingBottom = typeof x === "function" ? x : constant(+x), treemap) : paddingBottom; |
|
}; |
|
|
|
treemap.paddingLeft = function(x) { |
|
return arguments.length ? (paddingLeft = typeof x === "function" ? x : constant(+x), treemap) : paddingLeft; |
|
}; |
|
|
|
return treemap; |
|
} |
|
|
|
function binary(parent, x0, y0, x1, y1) { |
|
var nodes = parent.children, |
|
i, n = nodes.length, |
|
sum, sums = new Array(n + 1); |
|
|
|
for (sums[0] = sum = i = 0; i < n; ++i) { |
|
sums[i + 1] = sum += nodes[i].value; |
|
} |
|
|
|
partition(0, n, parent.value, x0, y0, x1, y1); |
|
|
|
function partition(i, j, value, x0, y0, x1, y1) { |
|
if (i >= j - 1) { |
|
var node = nodes[i]; |
|
node.x0 = x0, node.y0 = y0; |
|
node.x1 = x1, node.y1 = y1; |
|
return; |
|
} |
|
|
|
var valueOffset = sums[i], |
|
valueTarget = (value / 2) + valueOffset, |
|
k = i + 1, |
|
hi = j - 1; |
|
|
|
while (k < hi) { |
|
var mid = k + hi >>> 1; |
|
if (sums[mid] < valueTarget) k = mid + 1; |
|
else hi = mid; |
|
} |
|
|
|
if ((valueTarget - sums[k - 1]) < (sums[k] - valueTarget) && i + 1 < k) --k; |
|
|
|
var valueLeft = sums[k] - valueOffset, |
|
valueRight = value - valueLeft; |
|
|
|
if ((x1 - x0) > (y1 - y0)) { |
|
var xk = (x0 * valueRight + x1 * valueLeft) / value; |
|
partition(i, k, valueLeft, x0, y0, xk, y1); |
|
partition(k, j, valueRight, xk, y0, x1, y1); |
|
} else { |
|
var yk = (y0 * valueRight + y1 * valueLeft) / value; |
|
partition(i, k, valueLeft, x0, y0, x1, yk); |
|
partition(k, j, valueRight, x0, yk, x1, y1); |
|
} |
|
} |
|
} |
|
|
|
function sliceDice(parent, x0, y0, x1, y1) { |
|
(parent.depth & 1 ? treemapSlice : treemapDice)(parent, x0, y0, x1, y1); |
|
} |
|
|
|
var resquarify = (function custom(ratio) { |
|
|
|
function resquarify(parent, x0, y0, x1, y1) { |
|
if ((rows = parent._squarify) && (rows.ratio === ratio)) { |
|
var rows, |
|
row, |
|
nodes, |
|
i, |
|
j = -1, |
|
n, |
|
m = rows.length, |
|
value = parent.value; |
|
|
|
while (++j < m) { |
|
row = rows[j], nodes = row.children; |
|
for (i = row.value = 0, n = nodes.length; i < n; ++i) row.value += nodes[i].value; |
|
if (row.dice) treemapDice(row, x0, y0, x1, y0 += (y1 - y0) * row.value / value); |
|
else treemapSlice(row, x0, y0, x0 += (x1 - x0) * row.value / value, y1); |
|
value -= row.value; |
|
} |
|
} else { |
|
parent._squarify = rows = squarifyRatio(ratio, parent, x0, y0, x1, y1); |
|
rows.ratio = ratio; |
|
} |
|
} |
|
|
|
resquarify.ratio = function(x) { |
|
return custom((x = +x) > 1 ? x : 1); |
|
}; |
|
|
|
return resquarify; |
|
})(phi); |
|
|
|
exports.cluster = cluster; |
|
exports.hierarchy = hierarchy; |
|
exports.pack = index; |
|
exports.packSiblings = siblings; |
|
exports.packEnclose = enclose; |
|
exports.partition = partition; |
|
exports.stratify = stratify; |
|
exports.tree = tree; |
|
exports.treemap = index$1; |
|
exports.treemapBinary = binary; |
|
exports.treemapDice = treemapDice; |
|
exports.treemapSlice = treemapSlice; |
|
exports.treemapSliceDice = sliceDice; |
|
exports.treemapSquarify = squarify; |
|
exports.treemapResquarify = resquarify; |
|
|
|
Object.defineProperty(exports, '__esModule', { value: true }); |
|
|
|
})));
|
|
|